

ASSETS Scalable Content-based indexing and ranking D2.2.5 V1.0

D2.2.5 SCALABLE CONTENT-BASED

INDEXING AND RANKING

Advanced Search Services and Enhanced

Technological Solutions for the European Digital

Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.2.5 WP2.2

Deliverable

V.1.0 - 30 March 2012

Document. ref.: ASSETS.D2.2.5.CNR.WP2.2V1.0

ASSETS Scalable Content-based indexing and ranking D2.2.5 V1.0

Programme Name: ICT PSP

Project Number: 250527

Project Title: ASSETS

Partners: .. Coordinator: ENG (IT)

Contractors:

Document Number: D2.2.5

Work-Package:............................... WP2.2

Deliverable Type: Prototype

Contractual Date of Delivery: 31-January-2012

Actual Date of Delivery: 30-March-2012

Title of Document: Scalable Content-based indexing and ranking

Author(s): Giuseppe Amato, Paolo Bolettieri, Fabrizio

Falchi (CNR);

Michalis Lazaridis (CERTH);

Oscar Paytuvi (BMAT);

Fernando López (UAM);

Approval of this report APPROVED – Luigi Briguglio (ENG)

Summary of this report: see Executive Summary

History: .. see Change History

Keyword List: ASSETS, similarity, indexing, services, search

Availability This report is:

X public

Change History

Version Date Status Author

(Partner)

Description

0.1 13/01/2012 Draft PB (CNR) Initial draft

0.2 17/01/2012 Draft PB (CNR) Release for dev team

review

0.3 01/02/2012 Draft ENG Peer reviewing by

Massimiliano Nigrelli (ENG)

0.4 15/02/2012 Draft PB (CNR) Release for Approval

0.5 23/03/2012 Draft SG(AIT) Small test improvements,

suggestions for

improvement

0.6 26/03/2012 Draft GA-PB (CNR) Integration of SG

suggestions

1.0 30/03/2012 Final LB (ENG) Approval and Release

ASSETS Scalable Content-based indexing and ranking D2.2.5 V1.0

Table of Contents

1. INTRODUCTION 2

2. IMAGE INDEXING AND RETRIEVAL 3

2.1 Introduction 3

2.2 Software Requirements Overview 3
2.2.1 Requirements 3
2.2.2 Use Cases 4

Image indexing 4
Image searching 5

2.3 Technical Documentation 8
2.3.1 UML Diagrams 8
2.3.2 Service APIs: REST services 12

REST service for searching 13
REST service for inserting 14

2.3.3 Service APIs: Client API 15
Client API for inserting 15
Client API for searching 16

2.3.4 Software Packaging 17
2.3.5 Installation and configuration 17
2.3.6 Scientific foundations 18

2.4 User Manual 19
2.4.1 Text + Similarity Search 19
2.4.2 Image URL Similarity Search 20
2.4.3 File Uploading Image Similarity Search 22

2.5 Concluding Remarks 23

3. 3D-MODEL INDEXING AND RETRIEVAL 24

3.1 Software Requirements Overview 24
3.1.1 Functionality overview 24
3.1.2 Requirements 24

3.2 Technical Documentation: 25
3.2.1 3D search and retrieval use cases 25

3D model indexing use case 25
3D model search and retrieval use case 26

3.2.2 Service APIs 28
3D search and retrieval domain objects 28
3D extraction service interfaces 28
3D indexing service interfaces 30
3D retrieval service interfaces 31
3D search and retrieval client interfaces 32

3.2.3 Software Packaging 34
3.2.4 Installation and configuration 34
3.2.5 Scientific foundations 35

ASSETS Scalable Content-based indexing and ranking D2.2.5 V1.0

3.3 User Manual 37
3.3.1 Search by hand-drawn sketch 37
3.3.2 Search by uploaded 3d model 38
3.3.3 Search by id 40

3.4 Concluding Remarks 42

4. AUDIO INDEXING AND RETRIEVAL 43

4.1 Introduction 43

4.2 Software Requirements Overview 43
4.2.1 Functionality overview 43
4.2.2 Requirements 43

4.3 Technical Documentation: 44
4.3.1 Audio Service Use Cases 44

Indexing use case 44
Retrieval use case 45

4.3.2 Audio Class Diagrams 47
Audio Indexing Class Diagram 47
Audio Searching Class Diagram 47
Domain object 48

4.3.3 Service APIS: Rest Interfaces 48
4.3.4 Service APIs: Client Interfaces 48

Audio Searching Service Interfaces 48
Audio Indexing Service Interfaces 49

4.3.5 Software Packaging 50
4.3.6 Audio feature extractor installation 50

Technical Requirements 50
Installation Instructions for Redhat/Centos 5.X 50
Installation instructions for debian/ubuntu 51

4.3.7 Audio Search Engine installation and configuration 52
Technical requirements 52
Installation Instructions 52
Configuration 53
Operation 55
Troubleshooting 55

4.3.8 Scientific foundations 55

4.4 User Manual 57
4.4.1 Audio Search by existing track 57
4.4.2 Audio Search by uploading track 57
4.4.3 Audio Search by url 58
4.4.4 Audio Description 59
4.4.5 Audio Search by Audio Description 60

4.5 Concluding Remarks 60

5. VIDEO SUMMARIZATION, ADAPTATION, INDEXING AND RETRIEVAL 61

5.1 Software Requirements Overview 61
5.1.1 Requirements 61
5.1.2 Use cases 61

ASSETS Scalable Content-based indexing and ranking D2.2.5 V1.0

Use case for video summarization 61
Use case for image similarity search 63
Use case for video similarity search 63

5.2 Technical Documentation: 64
5.2.1 UML Diagrams 64
5.2.2 Service APIs: REST interfaces 66
5.2.3 Services APIs: Client interfaces 68
5.2.4 Installation and configuration 70

Memory requirements 70
Additional software 70

5.3 User Manual 72
Video summarization 72
Video similarity search 74

5.4 Bibliography 75

6. CONCLUDING REMARKS 76

ASSETS Scalable Content-based indexing and ranking 1 D2.2.5 V1.0

Executive Summary

This is a technical document
1
 detailing the ASSETS architecture and APIs for “scalable

content-based indexing and ranking” components.

It introduces technical aspects of all the software services that have been defined, analyzed,

implemented and tested during ASSETS WP2.2.

This document provides the following information:

• The software requirements overview;

• The technical documentation (UML diagrams, services description and API

documentation, the software packaging and installation);

• The user manual.

1 Part of the content of this deliverable already appears in Deliverable 2.0.4 “The ASSET APIs”

ASSETS Scalable Content-based indexing and ranking 2 D2.2.5 V1.0

1. Introduction

The goal of the ASSETS WP2.2 is to enhance the usability of Europeana portal (the European

Digital Library platform) with innovative services that aim at improving the existing search

functionality. These services allow users to search multimedia objects based on content

similarity. They are designed to be reused by any digital library.

This deliverable provides the technical documentation for the ASSETS content-based

indexing and ranking services, needed to install, configure and use them.

The document is divided into four parts which neatly describe the four ASSETS content-

based indexing and ranking services.

It introduces technical aspects of the services, such as the software requirements, the UML

diagrams, the API documentation, the software installation and configuration, and the user

manuals.

The Section 2 "Image indexing and retrieval" concerns the image similarity service, that

allows users searching between Europeana images using an image as query.

The Section 3 "3D-model indexing and retrieval" describes the 3D Model service, which

allows users to search for 3D models similar to a 3D model selected as query.

The Section 4 "Audio indexing and retrieval" refers to the audio service, that provides

advanced music search and recommendation functionalities.

Finally, the section 5 "Video summarization, adaptation, indexing and retrieval" describes

the video service, that aims at enhancing the functionalities of Europeana for searching,

browsing, pre-visualizing and accessing video content.

ASSETS Scalable Content-based indexing and ranking 3 D2.2.5 V1.0

2. Image indexing and retrieval

2.1 Introduction

Content-based image retrieval (CBIR) is becoming a popular way for searching digital

libraries as the amount of available multimedia data keeps on increasing. CBIR applications

are becoming popular for accessing cultural heritage information, as they represent a

complement to metadata based search. In fact, in some cases, metadata associated with

images do not describe the content with enough details to satisfy the user queries, or

sometimes metadata are completely missing. Images containing reproductions of works of

art contain a lot of implicit information that is not generally described in manually

generated metadata.

Various search paradigms can be supported by means of this functionality. In the Europeana

context, results of a metadata based search can be used as CBIR queries to refine the

search, external documents can be used to access the Europeana content or even the

Europeana content can be used to get information concerning documents owned by the

users (for instance, who is the author of the painting contained in this picture?).

The objective of the Image indexing and retrieval service is to provide a system able to

perform effective and efficient similarity search on image documents, including images of

scanned manuscripts. The proposed system offers functionality that uses the real content of

the images, rather than their metadata only, to search for other documents.

2.2 Software Requirements Overview

2.2.1 Requirements

Usability: The web user interface should allow similarity search in a self explanatory and

easy way. So, no particular settings, weights or parameters should be required during a

search.

Reliability: The image similarity search engine will be based on three MPEG-7 Visual

Descriptors that can be automatically extracted from images -- ScalableColor,

EdgeHistogram, ColorLayout. The similarity (or dissimilarity) function used to compare any

two images will be a linear combination of the distances suggested by the MPEG group for

each of these features.

Given the similarity function used for comparing any two images, the index data structures

will return approximate results. The relative quality of the results will be evaluated with the

Recall and Error on Position measures. Expected values are 0.3 for Recall and less than 0.002

for Error on Position.

Performance: Should be able to answer queries within a second.

User Interfaces: A link for searching similar images should be added near each image

returned by the Europeana in the web user interface independently from the type of query

performed. In particular, the button or link for similarity searching should be displayed only

for those images for which it would be possible to perform the content-based similarity

search.

A text reporting the similarity score of the results images could be added in the results list of

ASSETS Scalable Content-based indexing and ranking 4 D2.2.5 V1.0

similar images. However, this is not mandatory.

It should not be necessary to have a specific user interface for Content Providers. The

standard methods and user interface used for ingestion of the images metadata and

thumbnails should be used.

Look & Feel: All the links to the similarity services should be self-explanatory linked text.

Licensing Requirements: The image similarity search service is written in Java and requires

the Java Runtime Environment. There are no requirements to acquire a licence for

commercial third party software. Third party components are several open-source Java

libraries (like LIRE).

Applicable Standards: The image features extraction software will accept most of the image

formats used nowadays, i.e.; JPG, PNG, GIF, BMP. Please note that RAW photo camera files

are not accepted.

Suggested resolution for the images is 500x500 pixels or more. The size of each image file

should not exceed 10 Mega Bytes, to reduce downloading and features extraction times.

System Documentation: (a) Code is commented in a professional manner so that API

documentation can be automatically generated, and (b) service documentation, detailing

the installation, configuration, and use of the service is object of this deliverable.

2.2.2 Use Cases

Image indexing

This use case describes the activities that are performed during the images indexing.

Actors:

• Europeana Ingestion Manager/Repox2SIP who harvests the metadata that will be

used as input for the ingestion workflow (see also: Europeana - Requirements for

integration of ingestion tools).

• ASSETS developers who develop the metadata enrichment services and use the

ingestion workflow to insert content into the ASSETS database.

• ASSETS portal administrators who use the ingestion workflow to insert content into

the ASSETS database and to visualize/analyze the ingestion logs.

Stakeholder:

• End-user: wants to find images similar to one he/she has identified as interesting or

wants to identify an image whose motif is unknown to him/her.

• Europeana: wants to offer powerful image search based on non-textual metadata

and actual content.

• Content providers: are unable to develop themselves this type of search by and

instead wish to offer the capability to their users via Europeana.

Preconditions:

• Images to be indexed are available through internet by URLs

Basic Flow of Events:

ASSETS Scalable Content-based indexing and ranking 5 D2.2.5 V1.0

Figure 1 - Image indexing use case

0. Start: The use case begins when the image search system is requested to add an

image to the index.

1. Image Download: The image is downloaded using its given URL. The image URL to

be indexed is made available through the metadata of complex objects inserted in

Europeana by the Content Providers.

2. Features Extraction: The requested content-based features are extracted. Feature

extraction is a time consuming operation and is performed off-line.

3. Features Storage: Automatic extracted features are stored. The index will be built

using the features previously stored. For this reason, in case of index rebuilding, it

will not be necessary to extract the features again. However, features are necessary

only for the content based image searching and indexing and it is not necessary to

store them with the other metadata.

4. Features Indexing: Features are indexed for content based searching. An index is

necessary to avoid comparison of the query image with all the images in the library.

Thus, index is built for efficiency and it is typically not dynamic. Dynamically

updating the index may result in rebuilding the index.

5. Image Indexing: Image indexing is finalized.

Image searching

This use case describes the activities that are performed during the image content-based

searching. The main goal of the service is to offer powerful yet easy to use image search

ASSETS Scalable Content-based indexing and ranking 6 D2.2.5 V1.0

functionalities to the portal end-users.

Actors:

• Europeana Ingestion Manager/Repox2SIP who harvests the metadata that will be

used as input for the ingestion workflow (see also: Europeana - Requirements for

integration of ingestion tools).

• ASSETS developers who develop the metadata enrichment services ASSETS portal

administrators who use the ingestion workflow to insert content into the ASSETS

database and to visualize/analyze the ingestion logs.

Stakeholder:

• End-users: want to find images similar to one he/she has identified as interesting or

wants to identify an image whose motif is unknown to him/her.

• Europeana: wants to offer powerful image search based on non-textual metadata

and actual content.

• Content providers: are unable to develop themselves this type of search by and

instead wish to offer the capability to their users via Europeana.

ASSETS Scalable Content-based indexing and ranking 7 D2.2.5 V1.0

Basic Flow of Events:

Figure 2 - Image searching use case

0. Start: The use case begins when the users access the site.

1. Browsing site: The user is browsing the site.

2. Home Page: The user is viewing the home page.

3. Generic results page with images: The user is viewing the results page of a previous

generic search.

4. Select an image: The user selects an image for searching between the ones listed in

the home page.

5. Query image uploading: The user selects an image between the ones in his device

and uploads it in order to search for similar images.

6. Select an image: The user selects an image between the ones displayed in the

results page.

ASSETS Scalable Content-based indexing and ranking 8 D2.2.5 V1.0

7. Features Extraction: Features are extracted from the image.

8. Content Based Similarity Search: Content based similarity search is performed.

9. Display Search Results Page: Results in a web page are displayed to the users.

Requirements for Content Provision:

Images to be indexed must be available through URL at medium resolution (at least 500x500

pixels) and must have one of the following formats: JPG, PNG, GIF, BMP.

Content requirements for Europeana portal:

Images to be indexed must be available through URL at medium resolution (at least 500x500

pixels) and must have one of the following formats: JPG, PNG, GIF, BMP.

2.3 Technical Documentation

2.3.1 UML Diagrams

The class diagrams of the domain objects used by the service are presented in Figure

4Figure 3 and Figure 4:

• QueryResults contains the query results with the most similar images to the one the

system was querying for, as a list of Europeana IDs.

• Image2Features allows extracting the visual features (necessary to perform an

image similarity search) from an image. To extract them, it makes use of LIRE
2
, an

open source Java content-based image retrieval library.

Figure 3 - Images Indexing and Retrieval: QueryResults

2 http://www.semanticmetadata.net/lire/

ASSETS Scalable Content-based indexing and ranking 9 D2.2.5 V1.0

Figure 4 - Images Indexing and Retrieval: Image2Features

The class diagram of the Image Searching Service is presented in Figure 5.

In this diagram the available methods to perform an image similarity search are shown. It is

possible to perform a search by:

• An image id (EuropeanaId),

• The stream of an image,

• An image URL.

Then, by calling getResults, the system returns the results of the query ranked by similarity.

Figure 5 - Images Indexing and Retrieval: Searching Service Class Diagram

ASSETS Scalable Content-based indexing and ranking 10 D2.2.5 V1.0

Figure 6 - Images Indexing and Retrieval: Indexing Service model

In this diagram the available methods to create and insert images into the image similarity

search index are shown. The initIndex() method creates a new image index; it destroys the

previous index (if any) and then builds a new one. By calling the insertImage() method the

index can be populated by inserting images URLs or streams.

ASSETS Scalable Content-based indexing and ranking 11 D2.2.5 V1.0

Figure 7 - Images Indexing and Retrieval: Retrieval Client Model

In this diagram the client side methods used to perform an image similarity search are

shown. They allow performing a search by:

• An image id (EuropeanaId),

• The stream of an image,

• An image URL.

Then, by calling the getResults method the system will return the results of the query,

ranked by similarity.

ASSETS Scalable Content-based indexing and ranking 12 D2.2.5 V1.0

Figure 8 - Images Indexing and Retrieval: Indexing Client Model

In this diagram the client side methods used to create and insert images into the

image similarity search index are shown. initIndex() is the method to be invoked in order to

create a new image index; it destroys the previous index (if any) and then builds a new one.

Then, by calling insertImage() the index can be populated by inserting images URLs or

streams.

2.3.2 Service APIs: REST services

Among the REST services some are needed to build an image index and some to perform

image similarity searches. Figure 9 shows a table with the available services.

ASSETS Scalable Content-based indexing and ranking 13 D2.2.5 V1.0

Figure 9 - IRImage REST services

REST service for searching

The search service provides methods to perform a visual similarity search. They allow the

user to perform a search by:

• An image id (EuropeanaId),

• The stream of an image,

• An image URL.

The search methods return a list of EuropeanaId containing the ids of the most similar

images for the query.

Prefix path of the service is: /assets/ir-image/searching/rest

In Table the main service information needed to call it are shown.

Method Response

type

Name Parameters Function

GET XML/JSON searchById @imageQueryId, Id of the query

image

@numResults, number of results to

return. Default value: 100 (if the

parameter is missing).

Searches

similar images

starting from

an image Id

already in the

index

ASSETS Scalable Content-based indexing and ranking 14 D2.2.5 V1.0

POST-

MULTIP

ART

XML/JSON searchByObj @imgFile, InputStream of the query

image

@numResults, number of results to

return. Default value: 100 (if the

parameter is missing).

Searches

similar images

starting from

an uploaded

sample image

GET XML/JSON searchByUrl @imageQueryURL, URL of the query

Image

@numResults, number of results to

return. Default value: 100 (if the

parameter is missing).

Searches

similar images

starting from a

URL of a

sample image

Table 1 - REST Search methods

REST service for inserting

The insert service provides the needed methods to build a new image index and/or to insert

new images.

Prefix path of the service is: /assets/ir-image/indexing/rest/

In Table the main service information needed to call it are shown.

Method Respons

e type

Name Parameters Function

GET - openIndex @append, boolean value. If false the

index will be built from scratch.

Opens the index

for inserting

GET - closeIndex - Commits the

indexing process

and close the

index

POST-

MULTIP

ART

- insertImageObj @imageObj, InputStream of the

image to insert

@imageId, id of the image to insert

Inserts an image

into the index

GET - insertImageUrl @imageUrl, URL of the image to

insert

@imageId, id of the image to insert

Inserts an image

into the index

POST-

MULTIP

ART

- updateImageObj @imageObj, InputStream of the

image to update

@imageId, id of the image to update

Updates an

image into the

index

GET - updateImageUrl @imageUrl, URL of the image to

update

@imageId, id of the image to update

Updates an

image into the

index

GET - deleteImage @imageId, id of the image to delete Deletes an image

from the index

GET - optimizeIndex - Optimizes the

index

GET - commit - Commits the

indexing process

ASSETS Scalable Content-based indexing and ranking 15 D2.2.5 V1.0

Table 2 - REST methods for management of the image index

2.3.3 Service APIs: Client API

Client API for inserting

This API provides the needed methods to interface with the inserting service. Next table

explains the available methods for inserting.

API ImageIndexing

Responsibility Allows building and populating the image index.

Provided

methods

void initIndex()

Creates a new image index. It destroys the previous index (if it exists) to

build a new one.

void insertImage(EuropeanaId imageId, InputStream imageObj)

Inserts an image into the index.

Images to be indexed should have a size of at least 500x500 pixels and

available in one of the following formats: JPG, PNG, GIF, BMP.

@imageObj InputStream of the image to insert

@imageId EuropeanaId of the image to insert

void insertImage(EuropeanaId imageId URL imageURL)

Inserts an image into the index.

Images to be indexed should have a size of at least 500x500 pixels and

available in one of the following formats: JPG, PNG, GIF, BMP.

@imageUrl URL of the image to insert

@imageId EuropeanaId of the image to insert

void updateImage(EuropeanaId imageId, InputStream imageObj)

Updates an image into the index.

Images to be indexed should have a size of at least 500x500 pixels and

available in one of the following formats: JPG, PNG, GIF, BMP.

@imageObj InputStream of the image to update

@imageId EuropeanaId of the image to update

void updateImage(EuropeanaId imageId URL imageURL)

Updates an image into the index.

Images to be indexed should have a size of at least 500x500 pixels and

available in one of the following formats: JPG, PNG, GIF, BMP.

@imageUrl URL of the image to update

@imageId EuropeanaId of the image to update

ASSETS Scalable Content-based indexing and ranking 16 D2.2.5 V1.0

void deleteImage(EuropeanaId imageId)

deletes an image from the index.

@imageId EuropeanaId of the image to delete

void commit()

Commits the indexing process.

void optimizeIndex()

Optimizes the index.

void openIndex(boolean append);

Opens the index for inserting.

@append If false the index will be built from scratch

void closeIndex()

Commits the indexing process and close the index.

Dependencies ASSETS Common

 Client API for searching

This API provides the needed methods to interface with the searching service. Next table

explains the available methods for searching.

API ImageSearching

Responsibility Allows to perform image similarity searches.

Provided

methods

void searchById(EuropeanaId euId)

Searches similar images starting from an EuropeanaId already in the index.

@imageQueryId EuropeanaId of the query image

void searchByObj(InputStream imgObj)

Searches similar images starting from a sample image.

A query image should have a size of at least 500x500 pixels and available

in one of the following formats: JPG, PNG, GIF, BMP.

@imageQueryObj InputStream of the query image

void searchByUrl(URL imageUrl)

Searches similar images starting from a sample image.

A query image should have a size of at least 500x500 pixels and available

in one of the following formats: JPG, PNG, GIF, BMP.

@imageQueryURL URL of the query Image

ASSETS Scalable Content-based indexing and ranking 17 D2.2.5 V1.0

List<EuropeanaId> getResults(int startFrom, int numResults)

Returns the results of the query.

@startFrom index to start

@numResults number of results to return. If the value is set to -1, it

returns all the query results.

It returns a List of EuropeanaId containing the ids of the query results.

Dependencies ASSETS Common

2.3.4 Software Packaging

The image index software is 100% Java code. It consists of a jar library file, some

configuration files and some library dependences.

The software needs the following libraries:

� Image-index library:

melampo.jar

 This is the main image index module

� Dependence libraries:

lire.jar, messif.jar, mifile.jar, conja.jar, trove.jar, mtree.jar, jama.jar, lucene.jar,

vir.jar

 Feature extraction, and various utilities used in the main index module

� Configuration files:

assets-ir-image.properties, assets-ir-image-fx.properties, indices.properties,

LIRE_MP7ALL.properties

2.3.5 Installation and configuration

The image index installation and configuration steps are quite simple.

The software consists of a set of jar libraries and some configuration files. In order to install

the image service the following configuration files will need to be set:

assets-ir-image.properties, assets-ir-image-fx.properties, indices.properties,

LIRE_MP7ALL.properties

assets-ir-image.properties sets the image index home path and the feature extraction

configuration file.

It contains the following parameters:

• image_index_home = ${image.index.location}

that is the file system path of the image index. The index folder contains the image index

files.

• fx_config_file = ${image.fx.config.location}

ASSETS Scalable Content-based indexing and ranking 18 D2.2.5 V1.0

that is the file system path of the image features extractor configuration file.

 assets-ir-image-fx.properties contains the settings for the image features extraction.

At the moment it mustn't be modified.

indices.properties sets the similarity implementation to be used (currently ScalableColor,

EdgeHistogram and ColorLayout MPEG-7 descriptors)

LIRE_MP7ALL.properties is the main image index configuration file. This file is used to

configure the index. It contains the following parameters:

#path syntax: "*" means parent path of this configuration file (path of the image index

folder)

• archive_0 = */binaries/FCArchive-testset-lire.dat

Path of the binary files of the visual features.

#image index

• luceneIndexPath = */LuceneLire_filtered

Path of the image index.

#Pivot file

• PivotsPath = */binaries/LireObjectPivots_filtered_10k.dat

Pivot file (supplied with the index) to use during the indexing and the searching process.

#Num of pivots

• num_of_pivots = 10000

Number of pivots in the pivot file.

Top pivots to be used in the index

• maxpivsIndex = 50

Maximum number of pivots to use during the indexing process.

Top pivots to be used in the query

• maxpivsQuery = 50

Maximum number of pivots to use during the searching process.

2.3.6 Scientific foundations

Amato G., Savino P., Approximate Similarity Search from another "Perspective", SEBD 2008.

Bolettieri P., Falchi F., Lucchese C., Mass Y., Perego R., Rabitti F., Shmueli-Scheuer M.,

Searching 100M Images by Content Similarity, IRCDL 2009.

Gennaro C., Amato G., Bolettieri P., Savino P., An approach to content-based image retrieval

based on the Lucene search engine library, ECDL 2010.

Amato G., Bolettieri P., Falchi F., Gennaro C., Rabitti F., Combining local and global visual

feature similarity using a text search engine, CBMI 2011.

Gennaro C., Amato G., Bolettieri P., Savino P., An approach to Content-Based Image Retrieval

based on the Lucene search engine library (Extended Abstract), SEBD 2011.

ASSETS Scalable Content-based indexing and ranking 19 D2.2.5 V1.0

2.4 User Manual

In the next pages, the functionality of the image search service will be demonstrated

through some search samples on the project portal (http://assetsdemo.atc.gr/portal/).

2.4.1 Text + Similarity Search

Description: the user first searches for “leopold” as text query, then select one of the results

as a query for searching similar objects with the respect to the visual content.

#1 The user searches for “leopold”

#2 Text search results page. The user clicks on the similar button of one of the results

#3 Similar images are retrieved

ASSETS Scalable Content-based indexing and ranking 20 D2.2.5 V1.0

2.4.2 Image URL Similarity Search

Description: the user is interested in Europeana objects similar to the one he/she has found

on a web page.

#1 The user finds an image while navigating the British Library’s web site

http://www.bl.uk/onlinegallery/onlineex/apac/other/019wdz000002060u00007000.html

#2 The user right clicks on the image and select “Copy image URL”

The copied URL is
http://ogimages.bl.uk/images/019/019WDZ000002060U00007000[SVC1].jpg

ASSETS Scalable Content-based indexing and ranking 21 D2.2.5 V1.0

#3 The user goes to the Europeana portal and click on the “Options” menu

#4 The user selects “Upload and Search”

#4 The user pastes the URL of the image and press the Search button

#4 The very same object together with similar items in Europeana are retrieved

ASSETS Scalable Content-based indexing and ranking 22 D2.2.5 V1.0

2.4.3 File Uploading Image Similarity Search

Description: the user has a photo and wants to find similar content in Europeana.

#1 The user goes to the Europeana portal and click on the “Options” menu

#2 The user selects “Upload and Search”:

#3 The user clicks on the box:

#4 The user navigates its own computer file system eventually selecting an image

ASSETS Scalable Content-based indexing and ranking 23 D2.2.5 V1.0

#5 The path is automatically inserted in the search and the user selects Search/Images

#6 Similar objects are finally retrieved:

2.5 Concluding Remarks

The image search and retrieval index was demonstrated during the first year review and

published in the Europeana ThoughtLabs:

http://pro.europeana.eu/web/guest/thoughtlab/new-ways-of-searching-and-browsing

ASSETS Scalable Content-based indexing and ranking 24 D2.2.5 V1.0

3. 3D-model indexing and retrieval

3.1 Software Requirements Overview

Apart from the well-known kind of data, like text, images, video and sound, Europeana

intends to host 3D representations of cultural objects. Thus, a technology is required which

can index large amounts of 3D models and enable the fast search and retrieval of 3D

models.

A user would like to search for 3D models geometrically similar to a query model. The 3D

search interface will allow three types of queries: models uploaded from the user, models

returned from a previous search and hand-drawn sketches.

3.1.1 Functionality overview

In the following paragraph, the different types of search will be described.

Upload a 3D model and search for similar models

The user accesses the interface by selecting the appropriate tab. S/he uploads a 3D model

by clicking a "Browse" button and selects the model file, which is located on his/her local

hard disk. The model is uploaded and the search similar function returns a list of similar

results.

Select one of the existing 3D models and search for similar models

The user accesses the interface by clicking on a "Search similar" link, while browsing through

the existing models. The search similar function returns a list of similar results.

Create a sketch and search for similar models

The user accesses the interface by selecting the appropriate tab on the user interface. S/he

draws a sketch an performs a search on the 3D content. The search similar function returns

a list of similar results.

3.1.2 Requirements

Usability: The service should be self explanatory and easy to use even from a non-expert

user.

Reliability: The 3D search functionality should have a 24/7 availability and work every time

within acceptable time limits for a user search. The returned results should be geometrically

similar to the queried 3D object.

Performance: The feature should have no adverse effects on the performance of the

Europeana platform.

Look & Feel: Font and colors should be in line with Europeana brand guidelines.

ASSETS Scalable Content-based indexing and ranking 25 D2.2.5 V1.0

Layout and Navigation: Search similar button, upload interface, sketch interface.

Communications Interfaces: The interface will use stateless HTTP requests for the

communication with other services or clients.

Licensing: The 3D search service will be implemented in Java and requires the Java Runtime

Environment. There are no requirements to acquire a license for commercial third party

software. Third party components are a Java virtual machine and several open-source Java

libraries (like Log4J). The implementation uses well-known standards like HTTP and XML.

Documentation: Documentation for developers will be delivered as code documentation

and as a detailed document outlining the architecture and the interaction between the used

components.

3.2 Technical Documentation:

3.2.1 3D search and retrieval use cases

Two major use cases are identified in relation to the 3D search and retrieval service: the 3D

model indexing (UC1) and the 3D search and retrieval (UC2). In the following paragraph, a

brief description of each use case will be given.

3D model indexing use case

The following Figure describes the basic flow of events during the 3D model indexing.

ASSETS Scalable Content-based indexing and ranking 26 D2.2.5 V1.0

The use case begins with the Europeana Ingestion subsystem downloading the 3D model

from the Content Provider. The 3D model is sent to the Feature Extraction service, which

extracts the 3D descriptors and sends them back to the Ingestion subsystem. The 3D

descriptors are indexed along with the rest of the metadata. Alternatively, the Feature

Extraction service can download the 3D model itself, under the assumption that it is

accessible. Available 3D model formats are: .wrl, .x3d, .off, .obj and .3ds.

After the use case is completed, the system has a set of 3D descriptors indexed along with

the object metadata.

3D model search and retrieval use case

The following Figure describes the basic flow of events during the 3D model search and

retrieval.

ASSETS Scalable Content-based indexing and ranking 27 D2.2.5 V1.0

The use case begins with the user accessing the Europeana site. The user uploads a 3D

model or draws a 2D sketch for using it as a query. The model/sketch is sent to the Feature

Extraction Service, which extracts the 3D descriptors. After the matching procedure, the

search results are returned to the user.

In an alternative flow, the use case begins with the user accessing the Europeana site. The

user selects a 3D model, which was returned in a previous search for using it as a query. The

ASSETS Scalable Content-based indexing and ranking 28 D2.2.5 V1.0

features are retrieved from the index. After the matching procedure, the search results are

returned to the user.

After the use case is completed, the user receives a list of results in which the retrieved

objects are geometrically similar to the given query object. Available object formats are:

.wrl, .x3d, .off, .obj and .3ds for 3D model queries, as well as 100x100 monochrome .png

images.

3.2.2 Service APIs

The Search and Retrieval framework consists of the following services:

• the Extraction3D service, responsible for extracting the 3D low-level features out of

the 3D objects or hand-drawn sketches,

• the Indexing3D service, responsible for creating the 3D index,

• the Retrieval3D service, responsible for returning to the user results similar to a

given query object.

3D search and retrieval domain objects

In the following Figure, the class diagrams of the domain objects used by the 3D services are

shown.

o QueryResults contains the query results with the most similar 3D models to the query

object, as a list of EuropeanaIds.

o QueryResultsMarshaller marshals the 3D search results in a list of EuropeanaIDAdapter

objects (Rest Service purpose).

o Index3DResponse contains the 3D search results as a list of EuropeanaUris.

3D extraction service interfaces

Service Name Extraction3DService

ASSETS Scalable Content-based indexing and ranking 29 D2.2.5 V1.0

Responsibility Extraction of the 3D low-level features out of the 3D objects or hand-

drawn sketches

Provided

Interfaces

String extract3D(String url)

throws Extraction3DException

Extracts 3D low-level feature vector from a 3D model, given by its url. The

3D model should be in one of the following formats: VRML, 3DS, OBJ, OFF,

X3D. It returns an xml representation of the extracted 3D low-level

descriptors.

int[][] extract3DToArray(String url)

throws Extraction3DException

Extracts 3D low-level feature vector from a 3D model, given by its url. The

3D model should be in one of the following formats: VRML, 3DS, OBJ, OFF,

X3D. It returns the extracted 3D low-level descriptors in a 2-dimensional

array of integers.

String extract3DFromSketch(String url)

throws Extraction3DException

Extracts 3D low-level feature vector from a hand-drawn sketch, given by

its url. The sketch should be saved as a .png file. The size of the sketch

should be either 100x100 or 400x400. It returns an xml representation of

the extracted 3D low-level descriptors.

int [] extract3DFromSketchToArray(String url)

throws Extraction3DException

Extracts 3D low-level feature vector from a hand-drawn sketch, given by

its url. The sketch should be saved as a .png file. The size of the sketch

should be either 100x100 or 400x400. It returns the extracted 3D low-level

descriptors in an array of integers.

Dependencies ASSETS Common

In the following Figure, the class diagram of the 3D Extraction service is shown.

ASSETS Scalable Content-based indexing and ranking 30 D2.2.5 V1.0

o extract3D passes the url of a 3D model to the extractor; the results are returned as an

XML string.

o extract3DToArray does the same, with the difference that the results are returned as a

two-dimensional int array.

o extract3DFromSketch passes the url of a hand-drawn sketch to the extractor; the results

are returned as an XML string.

o extract3DFromSketchToArray does the same, with the difference that the results are

returned as an int array.

3D indexing service interfaces

Service Name Indexing3DService

Responsibility Creation of the 3D index

Provided

Interfaces

String initIndex(String objectsFile)

throws Indexing3DException

Initializes the 3D index and insert all objects that are listed along with their

metadata and 3D descriptors into the index.

Dependencies ASSETS Common

In the following Figure, the class diagram of the 3D Indexing service is shown.

ASSETS Scalable Content-based indexing and ranking 31 D2.2.5 V1.0

initIndex() creates a new 3D index by passing the URL of a file that contains the URLs of the

new 3D models to be indexed.

3D retrieval service interfaces

Service Name Retrieval3DService

Responsibility Returns results, similar to a given query, to the user.

Provided

Interfaces

TreeMap<Double, EuropeanaObject>

searchSimilar(EuropeanaId queryID, int numOfResults)

throws Retrieval3DException,

Indexing3DException,

Extraction3DException

Searches for 3D models similar to a model given by its EuropeanaId.

TreeMap<Double, EuropeanaObject>

searchSimilar(URL modelURL, int numOfResults)

throws Retrieval3DException,

Indexing3DException,

Extraction3DException

Searches for 3D models similar to a model given by its URL. If the query is

a 3d model, it should be in one of the following formats: VRML, 3DS, OBJ,

OFF, X3D. If the query is a hand drawn sketch, it should be a monochrome

PNG file of size either 100x100 or 400x400.

TreeMap<Double, EuropeanaObject>

searchSimilar(InputStream modelFile,

ASSETS Scalable Content-based indexing and ranking 32 D2.2.5 V1.0

String extension,

int numOfResults)

throws Retrieval3DException,

Indexing3DException,

Extraction3DException

Searches for 3D models similar to a model given by its input stream. If the

query is a 3d model, it should be in one of the following formats: VRML,

3DS, OBJ, OFF, X3D. If the query is a hand drawn sketch, it should be a

monochrome PNG file of size either 100x100 or 400x400.

Dependencies ASSETS Common

In the following Figure, the class diagram of the 3D Retrieval service is shown.

The following query forms can be used:

• a 3D model id (EuropeanaId);

• the input stream of a 3D model;

• a 3D model URL or a hand-drawn sketch URL.

The results are ranked by similarity.

3D search and retrieval client interfaces

In the following Figure, the class diagram of the 3D Extraction client is shown.

ASSETS Scalable Content-based indexing and ranking 33 D2.2.5 V1.0

sendLinkToService() sends the 3D model file URL to the extractor and receives the extracted

features as an XML string.

In the following Figure, the class diagram of the 3D Indexing client is shown.

sendInitLinkToService() sends the URL of a file containing 3D model URLs to the index

creator.

In the following Figure, the class diagram of the 3D Retrieval client is shown.

ASSETS Scalable Content-based indexing and ranking 34 D2.2.5 V1.0

The following query forms can be used:

• a 3D model id (EuropeanaId);

• the stream of a 3D model;

• a 3D model URL or a hand-drawn sketch URL.

By calling getResults() the system returns the results of the 3D search ranked by similarity.

3.2.3 Software Packaging

The 3D search and retrieval framework consists of two parts:

• the 3D search and retrieval services, packaged in a war file

• the 3D search and retrieval clients, packaged in a jar file

The services package also contains the 3D index.

3.2.4 Installation and configuration

The installation of the 3D search and retrieval framework is straightforward. The services

war package needs to be deployed on a web server/servlet container like Apache Tomcat or

Jetty.

Two folders need to be accessible for the service: the index folder and the temp (temporary)

folder. The index folder contains the 3D index in the form of files, as they appear in the

following list:

ASSETS Scalable Content-based indexing and ranking 35 D2.2.5 V1.0

The temp folder is initially empty and serves for storing the uploaded queries and other

feature extraction related files. This folder needs to be accessible both for reading and

writing.

After the installation, the configuration file assets-ir-threed.properties needs to be updated

in order to point to the correct location (paths) of the two folders.

The initial configuration may look like:

threed_index_path = ./services/ir-threed/src/main/resources/index/

threed_content_folder= ./services/ir-threed/src/main/resources/temp/

Since this package structure will not be available on the production server, the paths need

to be updated, in order to point to the correct location:

threed_index_path = ./ir-threed/index/

threed_content_folder = ./ir-threed/

3.2.5 Scientific foundations

The description of the scientific foundations, on which the 3D search and retrieval

framework relies, is out of the scope of this deliverable. The feature extraction algorithm is

based on [1], while the index structure used in the framework is based on [2].

[1] P. Daras, A. Axenopoulos: A 3D Shape Retrieval Framework Supporting Multimodal

ASSETS Scalable Content-based indexing and ranking 36 D2.2.5 V1.0

Queries. International Journal of Computer Vision, Springer, Volume 89, Issue 2, 2010-09

[2] G. Amato, P. Savino: Approximate similarity search in metric spaces using inverted files.

In: Proceedings of the 3rd International Conference on Scalable Information Systems

(InfoScale 2008), pp. 1–10. ICST (2008)

ASSETS Scalable Content-based indexing and ranking 37 D2.2.5 V1.0

3.3 User Manual

In the following sections, the functionality of the 3D search and retrieval framework will be

demonstrated through an example of a search request in the Assets portal

(http://assetsdemo.atc.gr/portal/).

3.3.1 Search by hand-drawn sketch

The user wishes to draw a sketch and search for similar 3d models. This can be done

through the dedicated interface on the portal:

#1 Open the ASSETS portal

#2 Click on “Options” / “Draw and Search”

#3 The following interface appears:

#4 Draw shape

#5 Choose “Fill” option

#6 Click on area to be filled and fill shape

ASSETS Scalable Content-based indexing and ranking 38 D2.2.5 V1.0

#7 Press Search button and search for similar 3D model

#8 The search in the Assets portal returns 10 results

3.3.2 Search by uploaded 3d model

#1 Open the ASSETS portal

#2 Click on “Options” / “Upload and Search”

#3 The following interface appears:

ASSETS Scalable Content-based indexing and ranking 39 D2.2.5 V1.0

#4 Click on the “Browse” button and choose a query 3d model file from local hard-disk or

click on the “Upload URL” link and give the URL of a 3d model file to be placed into the input

field.

In this example, the 3d model “stadium.wrl” was used as a query, which is accessible

through the following address:

http://www.europeanalabs.eu/svn/assets/trunk/services/ir-

threed/src/test/resources/stadium.wrl

Remark: Valid 3D model file extensions for this service are: wrl, x3d, 3ds, obj, off

#5 The search in the Assets portal returns 10 results

ASSETS Scalable Content-based indexing and ranking 40 D2.2.5 V1.0

3.3.3 Search by id

In any of the result pages of the last two examples, the user can click on the “Similar search”

button, located under all the 3d results and search for 3d models similar to that result.

As an example, we continue after step #5 of the last section:

#6 Click on the “Similar search” () of the result “Olympiastadion Berlin”

ASSETS Scalable Content-based indexing and ranking 41 D2.2.5 V1.0

#18 The search in the Assets portal returns 10 results

ASSETS Scalable Content-based indexing and ranking 42 D2.2.5 V1.0

3.4 Concluding Remarks

The 3D search and retrieval framework was demonstrated during the first year review and

published in the Europeana ThoughtLabs:

http://pro.europeana.eu/web/guest/thoughtlab/new-ways-of-searching-and-browsing

ASSETS Scalable Content-based indexing and ranking 43 D2.2.5 V1.0

4. Audio indexing and retrieval

4.1 Introduction

The service has two main objectives:

• Providing a service for the automatic description and content enrichment of music

audio data,

• Providing a service for fast indexing and retrieval of music audio content.

Music search core engine will listen to, understand and interpret music like humans do. It

will describe audio in musical and perceptual terms like rhythm (bpm, percussiveness),

harmony (key, mode, chords), timbre (instrumentation, production qualities), genre of the

song, and even moods (‘blue’, ‘party’, ‘furious’, ‘happy’… amongst others).

The audio description is combined with editorial information (artist, release date, country)

as well as information distilled from blogs, reviews, or other external data. This supports

implementation of a hybrid music search.

The search engine will then base the search criteria on metadata extracted from the song

and its editorial content and will allow the users to search inside the collections for “music

that sounds like Pixies” or to query music like “what are the tracks from this repository

which sound like Chet Baker” or to select “I want relaxed jazzy music”.

Once the user has reduced the scope of search via editorial metadata or audio descriptors

search, the service will provide the means for retrieving similar tracks to a given track so to

obtain more user relevant results. The search must scale to millions of audio segments and

have a simple yet powerful API.

4.2 Software Requirements Overview

4.2.1 Functionality overview

The basic functionality of the audio service is the similarity search based on either an

uploaded track or an existing track in the catalog.

Please, see the comprehensive list of use cases displayed below:

1. Upload a music track or a track url and search for similar tracks,

2. Select one of the existing audio tracks and search for similar tracks,

3. Retrieve an audio description of a given track,

4. Search by audio descriptors.

4.2.2 Requirements

Usability: The service should be self-explanatory and easy to use even from a non-expert

user.

ASSETS Scalable Content-based indexing and ranking 44 D2.2.5 V1.0

Reliability: The audio search functionality should have a 24/7 availability and work every

time within acceptable time limits for a user search. The returned results should be

musically similar to the queried track.

Performance: The feature should have no adverse effects on Europeana.eu’s web site

performance.

Look & Feel: Font and colors should be in line with Europeana brand guidelines.

Layout and Navigation: Search similar button, upload interface, audio descriptors.

Communications Interfaces: The interface will use stateless HTTP for the communication

with other services or clients.

Licensing: The ir-audio uses a java library, jElla, which complies with the licence used by

Europeana artifacts - EUPL. However, this java library invokes functionality of the ella service

which is BMAT’s copyrighted. This back-end interface is REST based and supports well-

known standards like HTTP, XML and JSON.

Documentation: Documentation for developers will be delivered as code documentation

and as a detailed document outlining the architecture and the interaction between the used

components.

4.3 Technical Documentation:

4.3.1 Audio Service Use Cases

The main use case we considered for the audio service are: indexing and retrieval services.

Indexing use case

The indexing use case explains the indexation process an audio track undergoes when

ingested on assets system. The main point here is that audio editorial metadata is enriched

with data features coming from audio itself through Music Information Retrieval algorithms.

ASSETS Scalable Content-based indexing and ranking 45 D2.2.5 V1.0

Figure 10 Audio indexing Use case

Retrieval use case

The retrieval use case explains the retrieval (search) process both when searching based on

a track which is already in the assets system or based on a uploaded track sample. Results

are based on music similarity to the seed track.

ASSETS Scalable Content-based indexing and ranking 46 D2.2.5 V1.0

Figure 11 Audio Searching Use case

ASSETS Scalable Content-based indexing and ranking 47 D2.2.5 V1.0

4.3.2 Audio Class Diagrams

Audio Indexing Class Diagram

Figure 12 Audio Indexing Class Diagram

Audio Searching Class Diagram

Figure 13 Audio Searching Class Diagram

ASSETS Scalable Content-based indexing and ranking 48 D2.2.5 V1.0

Domain object

Figure 14 Audio Domain Object

4.3.3 Service APIS: Rest Interfaces

Method Response

type

Name Parameters Function

GET XML/JSON Component Returns the component display name

GET XML/JSON searchById @audioQueryId id of

the audio to be

searched by.

It returns a set of musically similar

songs to the seed audio.

GET XML/JSON Search @q a query string

including a set of

audio descriptors

with the value to be

searched (e.g.

mood:happy)

It returns those tracks which matched

the search.

GET XML/JSON getAudioDescript

ors

@audioQueryId id of

the audio whose

audio description is

to be retrieved

It returns the audio descriptors of a

given audio. Typically, this are

displayed in the interface (detail view).

GET XML/JSON searchByUrl @audioQueryUrl

http url of a remote

audio to be search by

It returns a set of musically similar

songs to the seed audio.

POST XML/JSON searchByObj @audioFile Audio

Binary data audio

stream to be

searched by.

It returns a set of musically similar

songs to the seed audio.

4.3.4 Service APIs: Client Interfaces

Audio Searching Service Interfaces

Service Name AudioSearchingService

Responsibility Provides methods associated to audio similarity search as well as audio

description search.

ASSETS Scalable Content-based indexing and ranking 49 D2.2.5 V1.0

Provided

Interfaces

void initIndex() throws AudioIndexingException

Index initialization

void insertAudio(EuropeanaId audioId, URL audioURL,

Dictionary<String,String> metadataObj) throws

AudioIndexingExceptionInserts the audio content coming via URL for

indexation .

void insertAudio(EuropeanaId audioId, InputStream audioObj,

Dictionary<String,String> metadataObj) throws AudioIndexingException;

Submits the audio content coming via InputStream for indexation .

Dependencies ASSETS Common

Figure 15 Audio Searching Service Interfaces

Audio Indexing Service Interfaces

Service Name AudioIndexingService

Responsibility Provides methods associated to audio similarity search as well as audio

description search.

Provided

Interfaces

AudioDescriptors getAudioDescriptors(EuropeanaId audioQueryId)

throws AudioSearchingException

Given an existing track id, it returns its audio descriptors.

void search(Map<String,String> filterObj) throws

AudioSearchingException

Searches within the collection by audio descriptor.

void searchSimilar(EuropeanaId audioQueryId, Map<String,String>

filterObj) throws AudioSearchingException

Given an existing track id, it returns similar tracks.

void searchSimilar(InputStream audioQueryObj, Map<String,String>

filterObj) throws AudioSearchingException

Given an existing track InputStream (usually not in the collection – Query

by Example), it returns similar tracks.

ASSETS Scalable Content-based indexing and ranking 50 D2.2.5 V1.0

void searchSimilar(URL audioQueryURL, Map<String,String> filterObj)

throws AudioSearchingException

Given an existing track url (usually not in the collection – Query by

Example), it returns similar tracks.

Dependencies ASSETS Common

Figure 16 Audio Indexing Service Interfaces

4.3.5 Software Packaging

The audio search service is provided as follows:

1. Ir-audio service is packaged in a war library.

2. Ir-audio client is packaged in a jar library.

3. Ir-audio uses a jar library implemented for ASSETS and called jElla that wraps the

calls to BMAT’s Audio search engine.

4. Installation instructions for audio search engine and audio feature extractor, (which

are both stand-alone) are documented below.

4.3.6 Audio feature extractor installation

Technical Requirements

• Linux RedHat (Centos) 5.x , Linux Debian Lenny , Ubuntu,

• Pentium Dual Core 1.86 GHz,

• RAM Memory : 4GB*,

• Storage space : 100GB*.

*Note: Storage and Memory requirements depends on the amount of tracks.

Installation Instructions for Redhat/Centos 5.X

1. Most dependencies will be automatically resolved by yum. Some of the packages

might not be available in the default package repositories. So, rpmforge should be

added to the list of repositories and the packages for tbb and fftw3f should be

installed:

wget http://packages.sw.be/rpmforge-release/rpmforge-release-0.3.6-

1.el5.rf.x86_64.rpm

sudo rpm -Uhv rpmforge-release-0.3.6-1.el5.rf.x86_64.rpm

sudo yum localinstall fftw3-3.1.2-5.el5.x86_64.rpm --nogpgcheck

sudo yum localinstall tbb-2.0-4.20070927.x86_64.rpm –nogpgcheck

2. Install the extractor:

sudo yum localinstall ella-extractor-x.y.z-1.x86_64.rpm –nogpgcheck

4.3.6..1 Redhat/Centos 5.5 onwards

ASSETS Scalable Content-based indexing and ranking 51 D2.2.5 V1.0

1. Most dependencies will be automatically resolved by yum. Some of the packages

might not be available in the default package repositories. So, rpmforge should be

added to the list of repositories and the packages for tbb and fftw3f should be

installed.

wget http://packages.sw.be/rpmforge-release/rpmforge-release-0.3.6-

1.el5.rf.x86_64.rpm

sudo rpm -Uhv rpmforge-release-0.3.6-1.el5.rf.x86_64.rpm

sudo yum localinstall fftw3-3.1.2-5.el5.x86_64.rpm --nogpgcheck

sudo yum localinstall tbb-2.2-1.20090809.x86_64.rpm --nogpgcheck

sudo yum install imlib2

sudo yum localinstall libavutil49-0.5.2-33.el5.x86_64.rpm –nogpgcheck

2. Install the extractor:

sudo yum localinstall ella-extractor-1.1.0-1.x86_64.rpm –nogpgcheck

3. Redhat 5.5 provides ffmpeg 0.6 but ella-extractor requires ffmpeg 0.5. Therefore,

remove ffmpeg-0.6 and dependencies:

sudo rpm -e ffmpeg --nodeps

sudo rpm -e x264 --nodeps

sudo rpm -e libavutil49 –nodeps

4. And install the following packages:

sudo rpm -i libtheora-1.0alpha8-1.x86_64.rpm

sudo rpm -i x264-0.0.0-0.5.20090708.el5.rf.x86_64.rpm

sudo rpm -i ffmpeg-0.5.2-2.el5.rf.x86_64.rpm

Installation instructions for debian/ubuntu

1. You have to install the following dependencies.

sudo apt-get install ffmpeg libboost-filesystem1.34.1 libboost-program-

options1.34.1 libcrypto++7 libcurl3 libfftw3-3 libsamplerate0 libsndfile1 libtag1c2a libtbb2

libyaml-0-1

2. Install the extractor:

sudo dpkg -i ella-extractor_x.y.z_amd64.deb

NOTE: The Ella extractor requires an Internet connection to validate its license in order to

work. Also make sure to exchange the x.y.z with the current version of the

packageOperation

Just Execute:

ella-extractor path/to/the/input_audiotrack path/to/the/output_signature

ASSETS Scalable Content-based indexing and ranking 52 D2.2.5 V1.0

4.3.7 Audio Search Engine installation and configuration

Technical requirements

• RedHat (CentOS) 5.3+ / Debian 5 (Lenny) / Ubuntu

• Pentium Dual Core 1.86 GHz

• RAM Memory : 4GB*

• Storage space : 100GB*

*Note: Storage and Memory requirements depends on the amount of tracks

Installation Instructions

Debian 5 (Lenny)

1. Install dependencies:

sudo aptitude install curl

sudo aptitude install python

sudo aptitude install python-central

sudo aptitude install python-yaml

sudo aptitude install libglib2.0-0

sudo dpkg -i libqtcore4_4.5.1-2_amd64.deb

sudo dpkg -i libqt4-network_4.5.1-2_amd64.deb

sudo dpkg -i *gaia2*.deb

sudo aptitude install openjdk-6-jre

sudo dpkg -i pylucene_2.3.1-1.1_amd64.deb

sudo aptitude install python-mako

sudo aptitude install libapache2-mod-wsgi

sudo aptitude install python-formencode

sudo dpkg -i python-webpy_0.310-1_all.deb

sudo aptitude install python-simplejson

sudo dpkg -i python-jsonpickle_0.2.0.trunk.20090715_all.deb

sudo dpkg -i python-mimerender_0.2.3_all.deb

sudo aptitude install python-sqlalchemy

2. Install Ella:

sudo dpkg -i python-ella-core_2.*.deb ella-ws_2.*.deb

Ubuntu

Just like Debian. After installation, do execute the following:

sudo pycentral rtinstall python2.6

Red Hat Enterprise Linux 5 / CentOS 5

Note: Ella is not compatible with SELinux. Instructions for disabling it can be found at this

link [http://www.crypt.gen.nz/selinux/disable_selinux.html]. Also, the default security

settings for Postgres are too restrictive. Password authentication must be enabled

in /var/lib/pgsql/data/pg_hba.conf by adding the following lines right before# "local" is for

Unix domain socket connections only:

allow localhost connections to ella database

ASSETS Scalable Content-based indexing and ranking 53 D2.2.5 V1.0

host ella ella 127.0.0.1/32 password sameuser

1. Add the RPMForge repository to your "yum" sources (see http://rpmforge.net/
for further information):

wget http://packages.sw.be/rpmforge-release/rpmforge-release-0.3.6-

1.el5.rf.x86_64.rpm

sudo rpm -Uhv rpmforge-release-0.3.6-1.el5.rf.x86_64.rpm

2. Install dependencies from official repositories:

sudo yum install httpd libyaml python-yaml python-simplejson curl

3. Install 3rd party software (packaged by BMAT):

 sudo yum --nogpgcheck localinstall python-jsonpickle-0.2.0-1.noarch.rpm

 sudo yum --nogpgcheck localinstall python-mako-0.2.4-1.noarch.rpm

 sudo yum --nogpgcheck localinstall python-webpy-0.31-2.1.noarch.rpm

 sudo yum --nogpgcheck localinstall PyLucene-2.3.2.1-3.x86_64.rpm

 sudo yum --nogpgcheck localinstall mod_wsgi-2.1-2.el5.x86_64.rpm

 sudo yum --nogpgcheck localinstall qt45-4.5.2-1.el5.pp.x86_64.rpm

 sudo yum --nogpgcheck localinstall python-sqlalchemy-0.4.9-1.x86_64.rpm

 sudo yum --nogpgcheck localinstall python-mimerender-0.2.2-1.noarch.rpm

 sudo yum --nogpgcheck localinstall python-formencode-1.0.1-1.x86_64.rpm

 sudo yum --nogpgcheck localinstall libyaml-0.1.2-3.el5.kb.x86_64.rpm

Note: libyaml rpm installation might fail due to newer package in the repositories. In this

case, please do:

sudo rpm -Uhv --force libyaml-0.1.2-3.el5.kb.x86_64.rpm

4. Install BMATs recommendation engine:

sudo yum --nogpgcheck localinstall libgaia2*

5. Install Ella:

sudo yum --nogpgcheck localinstall python-ella-core-2.2*.x86_64.rpm ella-ws-

2.2*.x86_64.rpm

NOTE: you may install it more quickly by doing sudo yum --nogpgcheck localinstall *.rpm

over the rpm files provided by BMAT.

Configuration

1. The data received from BMAT is one compressed tarball for the data (containing

similarity information and metadata) and one .py file (configuration) per collection.

A md5sum for all files is also provided to validate data consistency.

1a. The tarballs must be uncompressed in /var/lib/ella/collections. The usual

directory layout is the following:

ASSETS Scalable Content-based indexing and ranking 54 D2.2.5 V1.0

/var/lib/ella/

`-- collections

 |-- CUSTOMER_timestamp

 | |-- datasets

 | |-- enriched_index

 |-- CUSTOMER -> CUSTOMER_timestamp (this is a symbolic link)

 |-- TAGS_timestamp

 | |-- datasets

 | |-- index

 `-- TAGS -> TAGS_timestamp (this is a symbolic link)

In order to create the symbolic links, you may do the following:

ln -s /var/lib/ella/collections/CUSTOMER_timestamp

/var/lib/ella/collections/CUSTOMER

ln -s /var/lib/ella/collections/TAGS_timestamp /var/lib/ella/collections/TAGS

1b. The provided .py configuration files must be copied to /etc/ella/collections.

NOTE: Minimal setup will comprise two collections: a "tags" collection and a "customer"

collection. However, another collection called BMAT may be provided to offer

recommendation based on artists/tracks not available in the "customer" collection.

NOTE: Please, comment out the database part in the config.py if you don't require User

Recommendation.

database

database = dict(

connection = 'mysql://ella:ella@localhost/ella'

#)

2. [OPTIONAL: Only required if you make use of user recommendation] Setup your

favorite, sqlalchemy-compatible database (tested with Postgres and MySQL), install

their python connectors (python-psycopg2 for postgres and MySQL-python for

mysql) and start the server.

Note: If the db server does not run on the server where ELLA is installed, then the following

sql commands will have to be executed by hand on the DB:

2.a. Create the database

For PostgreSQL:

sudo -u postgres psql -c "CREATE USER ella WITH PASSWORD 'ella';"

sudo -u postgres psql -c "CREATE DATABASE ella;"

sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE ella TO ella;"

For MySQL:

mysql -u root -p -e "CREATE USER 'ella'@'localhost' IDENTIFIED BY 'ella';"

mysql -u root -p -e "CREATE DATABASE ella DEFAULT CHARACTER SET utf8;"

mysql -u root -p -e "GRANT ALL PRIVILEGES ON ella.* TO ella;"

2.b. initialize the database model (SCHEME is 'postgres' or 'mysql')

ASSETS Scalable Content-based indexing and ranking 55 D2.2.5 V1.0

python -m ella.core.db.model create 'SCHEME://ella:ella@localhost/ella'

2.c. set the connection string in /etc/ella/config.py accordingly (SCHEME is

'postgres' or 'mysql')

sudo vi /etc/ella/config.py (set database connection to

'SCHEME://ella:ella@localhost/ella')

Operation

It is important to install Ella on a clean server since some problems may arise if

conflicting apache configurations are present.

1. Before starting up the server, please make sure that the configuration is completed.

2. Then, execute:

(redhat/centos) sudo /etc/init.d/httpd restart

(debian) sudo /etc/init.d/apache2 restart

3. Please, note that the first call to ELLA will last because it takes sometime to load all

the necessary datasets.

4. You may test it by executing the following query such as:

curl localhost/ella-ws/collections/tags/search?q=rock

NOTE 1: replace $CUSTOMER by your collection name

NOTE 2: In order to execute the above, curl application is needed. You may install it by

doing:

 sudo yum install curl

4. if the previous query fails, probably there is a configuration issue. See the

troubleshooting section.

Troubleshooting

1. If the test query fails, please try the following:

sudo tail -f /var/log/httpd/* # or sudo tail -f /var/log/apache/* if you use debian

[enter][enter][enter][enter]

curl localhost/ella-ws/collections/tags/search?q=rock

You'll notice in the error logs what went.

2. If the problem persists, please contact support@bmat.com and attach the

following information:

• /var/log/httpd/*.log (see above) or /var/log/apache/*.log

• /etc/httpd/* or /etc/apache/*

• /etc/ella/*

• tree /var/lib/ella/collections/ > collections_tree.txt

• Query that fails to be executed.

4.3.8 Scientific foundations

Here are some of the references to papers and PhD which are behind the music search

provided by BMAT:

1. Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music audio

ASSETS Scalable Content-based indexing and ranking 56 D2.2.5 V1.0

recommendation. In ACM International Conference on Multimedia (ACMMM),

pages 211{212.

2. Cano, P., Celma, O., Koppenberger, M., and Buldu, J. M. (2006). The topology of

music recommendation networks. Chaos: An Interdisciplinary Journal of Nonlinear

Science. http://arxiv.org/abs/physics/0512266v1.

3. Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music audio

recommendation. In ACM International Conference on Multimedia (ACMMM),

4. Celma, O. PhD Thesis: Music Recommendation and Discovery in the Long Tail (2008)

5. Bogdanov, D., Serra, J., Wack, N., and Herrera, P. (2010). Hybrid music similarity

measure. Music Information Retrieval Evaluation eXchange (MIREX) Abstract

6. Bogdanov, D., Serra, J., Wack, N., and Herrera, P. (2009). From low-level to high-

level: Comparative study of music similarity measures. In Inter- national Workshop

on Advances in Music Information Research (AdMIRe), Co-Located with the IEEE

International Conference on Multimedia and Expo (ICME).

7. Bogdanov, D., Serra, J., Wack, N., and Herrera, P. (2010). Hybrid music similarity

measure. Music Information Retrieval Evaluation eXchange (MIREX) Abstract.

ASSETS Scalable Content-based indexing and ranking 57 D2.2.5 V1.0

4.4 User Manual

4.4.1 Audio Search by existing track

The user searches for “Eurovision” and obtains several items (which include video and

audio items). The icons indicate whether it is an audio, video, image or3d model…

(for developers only) Example relative URL: http://assetsdemo.atc.gr/portal/brief-

doc.html?start=1&view=table&assets=http%3A%2F%2Fi2.ytimg.com%2Fvi%2FmOUYgPmLK

0k%2Fdefault.jpg&query=similarAudio_http%3A%2F%2Fwww.europeana.eu%2Fresolve%2F

record%2F92001%2FD219B15D18424E5616DB5A0B606C0AED6D200005

Figure 17 Audio Search by Existing Track

The icon indicates that the retrieved content is an audio track. In order to

search similar tracks, click on the sear similar (i.e. ~) symbol.

4.4.2 Audio Search by uploading track

In order to perform an example “Upload and search” query:

1) mouse over the options text beneath the search box and drop down menu will be

displayed.

2) Click on Upload and Search,

3) Click on “upload file” on the left hand side of the text box

4) Select an mp3, wav or wma file.

5) Click on the Search button:

ASSETS Scalable Content-based indexing and ranking 58 D2.2.5 V1.0

Figure 18 Audio Search by Uploading a track

It will take some time but results will eventually appear.

4.4.3 Audio Search by url

In order to perform a search by url:

1) mouse over the options text beneath the search box and drop down menu will be

displayed.

2) Click on Upload and Search,

3) Click on “upload url” on the left hand side of the text box

4) Enter url (e.g.

http://audio.bmat.com/audio/2/b/bruce_springsteen/born_to_run/05-

born_to_run.mp3)

5) Click on the Search button:

(for developers only) Example relative URL: http://assetsdemo.atc.gr/portal/brief-

doc.html?query=uploadAudio&uploadSearchURL=http://audio.bmat.com/audio/2/b/bruce_

springsteen/born_to_run/05-born_to_run.mp3

ASSETS Scalable Content-based indexing and ranking 59 D2.2.5 V1.0

Figure 19 Audio Search by URL

4.4.4 Audio Description

In order to see the audio descriptors:

1) Mouse over the audio item result

2) Click on the “i” button. It will display the complete track information, including the

audio descriptors.

(for developers only) Example relative URL: http://assetsdemo.atc.gr/portal/brief-

doc.html?query=uploadAudio&uploadSearchURL=http://audio.bmat.com/audio/2/b/bruce_

springsteen/born_to_run/05-born_to_run.mp3

Figure 20 Audio Description

ASSETS Scalable Content-based indexing and ranking 60 D2.2.5 V1.0

4.4.5 Audio Search by Audio Description

In order to search by audio descriptors:

1) Mouse over the audio item result

2) Click on the “i” button. It will display the complete track information, including the

audio descriptors.

3) Click on any of the audio descriptors in order to search by one of these (see figure

above). In the example below, we clicked on “happy”:

(for developers only) Example relative URL: http://assetsdemo.atc.gr/portal/brief-

doc.html?start=1&view=table&assets=&query=audioDescriptorSearch_mood__happy

Figure 21 Audio Search by Audio Description

4.5 Concluding Remarks

The audio search and retrieval service was demonstrated on the first year review of the

ASSETS project and was tested for usability within the user evaluation.

ASSETS Scalable Content-based indexing and ranking 61 D2.2.5 V1.0

5. Video summarization, adaptation, indexing and

retrieval

5.1 Software Requirements Overview

5.1.1 Requirements

Usability: The video services are provided through a Web User Interface, which should be

self-explanatory and easy to use, even for basic users.

Reliability: The video services should be deployed in a high availability server with, at least,

4 GB of principal memory. The user should recognize the summarized videos and find results

as conceptually similar to the original videos.

Performance: Video summarization and indexing are time consuming operations and are

executed in background. Video search is a faster operation that can be executed online.

Look & Feel: Web pages layout should be in line with the Europeana web application

guidelines.

Applicable standards: The video service is able to process MPEG-2 and MPEG-4 video

profiles, including Flash Videos. The video search service is able to process also images in

JPEG, PNG, GIF and BMP format.

Documentation: The interfaces of the services include standard Javadoc comments. This

document includes additional conceptual-level comments.

5.1.2 Use cases

Use case for video summarization

The actors are:

- User.

- Europeana Web Interface.

- Europeana Video Service.

The flow of events is as follows (see Figure 22):

1. The Europeana Video Service summarizes videos in background.

2. The User searches for a Europeana video item.

3. The Europeana Web Interface shows a list of videos that match the search criteria.

4. The User indicates that s/he wants to see a summary of a video item.

5. The Europeana Web Interface retrieves the selected video from the Europeana Video

Service along with the keyframes of the summarized video.

6. The Europeana Web Interface shows the video summary to the User.

7. The User selects a keyframe.

8. The Europeana Web Interface skips the video to the position of this keyframe.

ASSETS Scalable Content-based indexing and ranking 62 D2.2.5 V1.0

Figure 22: Video summarization use case

Figure 23: Image similarity search use case

ASSETS Scalable Content-based indexing and ranking 63 D2.2.5 V1.0

Use case for image similarity search

The actors are:

- User.

- Europeana Web Interface.

- Europeana Video Service.

The flow of events is as follows (see Figure 23):

1. The Europeana Video Service indexes videos in background.

2. The User searches for a Europeana image.

3. The Europeana Web Interface shows a list of videos that match the search criteria.

4. The User indicates that s/he wants to search for videos similar to a specific Europeana

image.

5. The Europeana Web Interface transfers the query to the Europeana Video Service.

6. The Europeana Video Service returns a list of similar videos ordered by similarity.

7. The Europeana Web Interface shows the User a list of videos that are similar to the

provided image.

Use case for video similarity search

The actors are:

- User.

- Europeana Web Interface.

- Europeana Video Service.

The flow of events is as follows:

1. The Europeana Video Service indexes videos in background.

2. The User searches for a Europeana video.

3. The Europeana Web Interface shows a list of videos that match the search criteria.

4. The User indicates that s/he want to search for videos similar to a specific video item.

5. The Europeana Web Interface transfers the query to the Europeana Video Service.

6. The Europeana Video Service returns a list of similar videos ordered by similarity.

7. The Europeana Web Interface shows the User a list of videos that are similar to the

provided video.

ASSETS Scalable Content-based indexing and ranking 64 D2.2.5 V1.0

Figure 24: Video similarity search

5.2 Technical Documentation:

5.2.1 UML Diagrams

Service description

Figure 25 shows the UML class diagram of the domain object for the summarization service.

The method createSummarizedVideo() of the VideoSummarizationService class is intended

to index the video and return a corresponding VideoData object. The same original video

can be summarized several times with different values in the percentage parameter. Each

instance of the VideoData class represents a summarization request. This data is associated

to the EuropeanaId object by means of the getOriginalVideo() method. The

getVideoSummary() and getStoryboard() methods do not create new EuropeanaId instances

but a URL or a collection of KeyFrame objects, respectively. The KeyFrame class contains

information for the timestamp of the keyframe in the original video. The timestamp units

are milliseconds and 0 means the beginning of the video. The KeyFrame class also stores the

JPEG copy of the keyframe.

ASSETS Scalable Content-based indexing and ranking 65 D2.2.5 V1.0

Figure 25: Video summarization client model

Figure 26 shows the UML classes diagram for the indexing and retrieval service. The

getVideosSimilarToXXX() methods of the IRVideoService class are intended to obtain a

collection of visually similar videos (represented as instances of the SimilarityRanking class).

The operation receives as a parameter a EuropeanaId object that can be either an image or

a video. The visually similar videos the operation returns are obtained from those ones that

the module has previously analyzed and indexed (i.e., the videos that were received through

the indexVideo() method).

Figure 26: Similarity search client model

ASSETS Scalable Content-based indexing and ranking 66 D2.2.5 V1.0

5.2.2 Service APIs: REST interfaces

The following subsections list the REST interfaces for video indexing and retrieval. Below we

provide an example of these REST interfaces invocation:

GET http://localhost:8983/assets/ir-

video/summarization/rest/summarizedvideo?europeanaUriStr=http://www.europeana.eu/r

esolve/record/07794/337F0F2113547F5F8BB28B41432A93F324B312B0

In this example, "GET" is the posting method, "/summarizedvideo" is the path or the service

and “europeanaUriStr=…” is a query parameter.

In addition to using the unit tests, these services can be tested using the service's index.html

page (see Figure 27).

Figure 27: Video service's index.html page

The summarization service provides methods to summarize a video item and retrieve a

previously summarized video.

Table 3 gathers the information needed to call the video REST summarization services.

Prefix path of the service is: /assets/ir-video/summarization/rest.

Method Response

type

Name Parameters Function

GET XML/JSON getComponentNa

me

 Returns the component

name

GET XML/JSON getSummarizedVi

deo

@europeanaUriStr,

The video to be

retrieved

This method retrieves a

previously summarized

video from the MongoDB.

ASSETS Scalable Content-based indexing and ranking 67 D2.2.5 V1.0

POST XML/JSON createSummarize

dVideo

@europeanaUriStr,

The video to be

summarized

This method summarizes a

video and produces a video

summary that is stored in

the MongoDB

Table 3: REST video summarization services

Table 4 gathers the information needed to call the video REST indexing services. Prefix path

of the service is: /assets/ir-video/ir/rest.

Method Response

type

Name Parameters Function

GET XML/JSON gerComponentNa

me

 Returns the component

name

POST XML/JSON indexVideo @europeanaUriStr,

The video to be

indexed

The method calculates the

visual similarity indexes of

the video so that it can be

compared to the indexes of

other videos (for search

purposes).

MPEG-1, MPEG-2 and FLV

videos are currently

supported

GET XML/JSON getVideoSimilarT

oURLImage

@url, An image URL This operation retrieves a

list of videos that are similar

to the image file indicated in

the url parameter. The

visually similar videos that

this operation returns are

obtained from those that

our module has previously

analyzed and indexed

 The visually similar videos

that this operation returns

are obtained from those

that our module has

previously analyzed and

indexed (using

indexVideo()).

GET XML/JSON getVideoSimilarT

oEuropeanaImag

e

@europeanaUriStr,

The image to be used

as search pattern.

This operation retrieves a

list of videos that are similar

to the EuropeanaId image

indicated in the

europeanaUriStr parameter.

The visually similar videos

that this operation returns

are obtained from those

that our module has

previously analyzed and

indexed. The visually similar

videos that this operation

ASSETS Scalable Content-based indexing and ranking 68 D2.2.5 V1.0

returns are obtained from

those that our module has

previously analyzed and

indexed (using

indexVideo()).

GET XML/JSON getVideoSimilarT

oEuropeanaVide

o

europeanaUriStr,

The video to be used

as search pattern.

This operation retrieves a

list of videos that are similar

to the EuropeanaId video

indicated in the

europeanaUriStr parameter.

The visually similar videos

that this operation returns

are the result of aggregating

the visual similarity of the

keyframes of the video

indicated in the

europeanaUriStrVideo

parameter. The visually

similar videos that this

operation returns are

obtained from those that

our module has previously

analyzed and indexed (using

indexVideo()).

Table 4: REST video indexing services

5.2.3 Services APIs: Client interfaces

The ir-video module provides the following services through the corresponding interfaces.

Service Name Video Summarization

Responsibility The generation of reduced length versions of original videos and

extraction of representative keyframes.

Provided

Interfaces

� VideoSummarizationService

� VideoData

Dependencies ASSETS Common

Interface Name VideoSummarizationService

Key Concepts EuropeanaId

Operations � createSummarizedVideo() summarizes a video and produces a

video summary that is stored in the MongoDB. The caller can

optionally indicate the desired percentage for the video summary.

� createSummarizedVideoCollection() summarizes a video collection

and produces the video summaries that are stored in the

MongoDB.

ASSETS Scalable Content-based indexing and ranking 69 D2.2.5 V1.0

� deleteSummarizedVideo() deletes the video from the MongoDB.

� deleteSummarizedVideoCollection() deletes the summarized video

collection.

� getSummarizedVideo() retrieves a previously summarized video

from the MongoDB.

Interface Name VideoData

Key Concepts URL, KeyFrame

Operations � getOriginalVideo() gets the description of the original video.

� getVideoSummary() gets the description of the summarized video.

� getStoryBoard() Returns a collection of KeyFrame objects according

to the percentage that was indicated for the video summary. Each

KeyFrame instance is a representative picture of the video along

with its timestamp in the original video.

Service Name Video Indexing and Retrieval

Responsibility Indexing and searching for videos based on the visual similarity.

Provided

Interfaces

� IRVideoService

Dependencies ASSETS Common

Interface Name IRVideoService

Key Concepts EuropeanaId

Operations � indexVideo() calculates the visual similarity indexes of the video so

that it can be compared to the indexes of other videos (for search

purposes). The method does not return any information but stores

the EuropeanId parameter and the indexes in the internal

database.

� indexVideoCollection() indexes the indicated video collection

� deleteIndexedVideo() deletes the indicated indexed video.

� deleteAllIndexes() deletes all video indexes.

� getVideoSimilarToURLImage() retrieves a ranked list of videos that

are similar to a given example. The visually similar videos that this

operation returns are obtained from those that our module has

previously analyzed and indexed (using indexVideo()).

� getVideoSimilarToEuropeanaImage() retrieves a ranked list of

videos that are similar to a given example.

� getVideoSimilarToEuropeanaImageStream() retrieves a ranked list

of videos that are similar to a given example.

� getVideoSimilarToEuropeanaVideo() retrieves a ranked list of

videos that are similar to a given example.

ASSETS Scalable Content-based indexing and ranking 70 D2.2.5 V1.0

5.2.4 Installation and configuration

Memory requirements

The video summarization module requires certain memory. In our internal tests it exceeds 2

GB of memory. Windows 32 allocates a maximum of 2GB for the user space. This means

that 32 bit JVMs are not eligible for executing our module. You need a 64 bit JVM.

Additional software

For video summarization, the Xuggler library should be installed. The following instructions

are for the official Ubuntu Linux environment of the ASSETS project. The installation process

could differ for other environments. Section 0 references sources with additional installation

instructions.

Prerequisites

This section assumes that an instance of Apache Tomcat is installed. We also assume that

CATALINA_HOME environment variable points to the Tomcat directory.

Installation Instructions

1.- Download and install Xuggler from http://www.xuggler.com/xuggler/. The installation

script describes the environment variables to set up. In particular, be sure to setup the

following environment variables:

- Configure XUGGLE_HOME pointing to the Xuggler installation directory.

- Include XUGGLE_HOME in the LD_LIBRARY_PATH environment variable.

- Include XUGGLE_HOME in the PATH environment variable.

All of these variables are not required in all cases, but they will maximize the possibilities of

making Xuggler work in different situations and environments.

2.- Copy the content of XUGGLE_HOME/lib to CATALINA_HOME/shared/lib folder. Create

the destination folder, if necessary. The copied content contains all the shared libraries

required by Xuggler

3.- Specify to Apache Tomcat where to look for shared libraries. Edit the

CATALINA_HOME/conf/catalina.properties configuration file and add the following lines (or

append the specified folders if the lines already exist):

shared.loader=${catalina.home}/shared/lib,${catalina.home}/shared/lib/*.jar

java.library.path=/usr/local/xuggler/lib # Or wherever Xuggler libraries are

4.- Ensure that the environment variable LD_LIBRARY_PATH is 'visible' from Apache Tomcat.

If not (or not sure), it can be done by adding the following lines in the startup.sh script for

starting Apache Tomcat in Linux:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CATALINA_HOME/lib:$CATALINA_HOME/shared/li

b

export LD_LIBRARY_PATH

6.- Be sure to include the required Xuggler's .jar files in the /WEB-INF/lib/ subfolder of your

application when deploying it in Apache Tomcat.

ASSETS Scalable Content-based indexing and ranking 71 D2.2.5 V1.0

Additional notes

The first important thing to note about using JNI under Tomcat is that we cannot place the

native libraries or their JNI interfaces under the WEB-INF/lib or WEB-INF/classes directories

of a web application and expect to be able to reload the webapp without restarting the

server. The class that calls System.loadLibrary(String) must be loaded by a classloader that is

not affected by reloading the web application itself.

Then the Xuggler jars should be placed in the $CATALINA_HOME/shared/lib directory. Note

that in Tomcat the $CATALINA_HOME/shared/lib directory may not exist. In this case, it has

to be created .

The second important thing is that Tomcat does not take into account the $CLASSPATH or

$DYLD_LIBRARY_PATH of the console. So you will need to add this to the

$CATALINA_HOME/conf/catalina.properties:

shared.loader=${catalina.home}/shared/classes,${catalina.home}/shared/lib/*.jar

java.library.path=/usr/local/xuggler/lib

Video content and summaries

In order to point out where the video indexing and retrieval module should search for video

content, you have to configure the Spring configuration file named assets-ir-

video.properties.

Usually this value is:

portal.content.folder=${content.folder}

which means that it has to search for content in the standard portal content folder.

In addition, the indexed videos are generated in a subfolder of the content folder named

"generated".

Video indexes

Video indexes are stored in two different places:

1.- In a folder that has to be specified in the assets-ir-video.properties Spring configuration

file.

Usually this value is:

global.video.index.path=${video.globalindex.path}

2.- You need to create an additional PostgreSQL database for video indexes. For this purpose

the following script has to be executed:

cd assets/services/ir-video/src/main/resources

make clean create populate

The make command can receive different options that configure its behavior:

make clean # Crop the DB

make create #Create the DB

make populate # Populate the tables of the existing DB

make dump # Dump the DB content into a file named dumped_test_data.sql

ASSETS Scalable Content-based indexing and ranking 72 D2.2.5 V1.0

5.3 User Manual

This section highlights the integrated video summarization, indexing and searching features,

and demonstrates the usability improvements from the end-user point of view.

Video summarization

1) The user searches for "europeana" and obtains several video items. There is an icon at

the bottom right of each item indicating that these items contain video. The user can also

switch to the video tab, in which only video items are displayed.

ASSETS Scalable Content-based indexing and ranking 73 D2.2.5 V1.0

2) The user selects an item, in example we used the "Europeana: the WHAT, WHERE and

WHY" object. He/she obtains the original video along with a storyboard to navigate the

video. The storyboard contains the more significant parts of the video according to our

summarization algorithm.

3) The user clicks on any keyframe and the video

starts playing from that position.

4) The user presses the "Summary" button to obtain

a summary of the original video. Our algorithm has

removed redundant information in order to speed

up video browsing.

ASSETS Scalable Content-based indexing and ranking 74 D2.2.5 V1.0

Video similarity search

Once the video has been indexed, the user

can search for videos in the portal whose

content is similar to an example image.

1) The keyframes of the video have a "~"

small button to search for videos similar to

the selected keyframe.

In addition, the user can search for videos

similar to an image that is not in the

portal. In this case:

1) The user selects the "Upload and Search" option, which is below the main search box of

the portal.

2) The user uploads an example

image (.jpg, .jpeg, .gif, .png) from

his/her local disk and moves the

cursor over the "Search" button.

Figure 19 shows the image

used in this example.

3) The user selects the "on

videos" pop-up option.

4) The portal returns a list of videos that are similar

to the example image.

Figure 28: Image used for the

search

ASSETS Scalable Content-based indexing and ranking 75 D2.2.5 V1.0

5) The user can also

perform the operation

using the "Upload URL"

option. In this case an Internet URL of the example image has to be provided.

For instance, you can use the following URL:

http://www.thebowesmuseum.org.uk/uploads/collections/fullsize/b-m-868.JPG

5.4 Bibliography

[1] Apache Tomcat: http://tomcat.apache.org

[2] Xuggler: http://www.xuggle.com/xuggler/

[3] Additional information in the xuggle wiki:

http://wiki.xuggle.com/Frequently_Asked_Questions#I_get_an_.22UnsatisfiedLinkError.22_

when_I_run_Xuggler-based_Applications_in_Tomcat

[4] Additional information about Apache Tomcat and JNI:

http://wiki.apache.org/tomcat/HowTo#I.27m_encountering_classloader_problems_when_u

sing_JNI_under_Tomcat

ASSETS Scalable Content-based indexing and ranking 76 D2.2.5 V1.0

6. Concluding Remarks

In this deliverable we have described the ASSETS services for the content-based indexing

and ranking components, implemented and tested in ASSETS WP2.2.

The technical aspects of the following components have been explained in detail:

� Image indexing and retrieval service,

� 3D-model indexing and retrieval service,

� Audio indexing and retrieval service,

� Video summarization, adaptation, indexing and retrieval service.

The software requirements, the technical documentation (UML diagrams, services

description and API documentation, the software packaging and installation), and the user

manual have been provided for each service in order to allow developers to understand how

to use these services, and to know the steps to follow during their installation and

configuration process.

